Computation of Sharp Bounds on the Expected Value of a Supermodular Function of Risks with Given Marginals

نویسندگان

  • Giovanni Puccetti
  • Ludger Rüschendorf
چکیده

We show that the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012a) to compute distributional bounds can be used also to compute sharp lower and upper bounds on the expected value of a supermodular function of d random variables having fixed marginal distributions. Compared to the analytical methods existing in the literature the algorithm is widely applicable, more easily obtained and gives insight into the dependence structures attaining the bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of multivariate risks and positive dependence

In this paper we extend some recent results on the comparison of multivariate risk vectors w.r.t. supermodular and related orderings. We introduce a dependence notion called ‘weakly conditional increasing in sequence order’ that allows to conclude that ‘more dependent’ vectors in this ordering are also comparable w.r.t. the supermodular ordering. At the same time this ordering allows to compare...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Risk Bounds, Worst Case Dependence, and Optimal Claims and Contracts

Some classical results on risk bounds as the Fréchet bounds, the Hoeffding–Fréchet bounds and the extremal risk property of the comonotonicity dependence structure are used to describe worst case dependence structures for portfolios of real risks. An extension of the worst case dependence structure to portfolios of risk vectors is given. The bounds are used to (re-)derive and extend some result...

متن کامل

Bounds on the outer-independent double Italian domination number

An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2015